
JOURNAL OF APPROXIMATION THEORY 64, 1-16 (1991)

A Local Algorithm for
Constructing Non-negative Cubic Splines

BERND FISCHER AND GERHARD OPFER

Institut fur Angewandte Mathematik, University of Hamburg,
Bundesstrasse 55, D-2000 Hamburg 13, West-Germany

AND

MADAN L. PURl*
Department of Mathematics, Indiana University,

Bloomington, Indiana 47405

Communicated by Lothar Collatz

Received March 21, 1988; revised May 11, 1988

An interpolating spline which interpolates positive function values is not
necessarily positive for all arguments; a typical example of this occurs in the spline
interpolation of the normal density function of probability theory. We describe an
algorithm which produces non-negative interpolating splines provided the function
to be interpolated is positive. We start with the interpolating natural spline and
redefine it in those intervals for which the spline has negative values; we do this by
adding few extra knots to those intervals. First we show that for any choice of extra
knots it is possible to construct a spline which is non-negative. We call such a spline
feasible. Second we show that within the set of feasible splines there is a best spline,
in the sense that the functional which reflects the strain energy is minimized.
Finally, by using a necessary optimality criterion we obtain an optimal spline which
minimizes the strain energy also with respect to the free knots. The resulting
formulae give explicit results and are very simple. Our numerical results show that
the final step of selecting the interior knots appropriately gives very satisfactory
results in a very efficient manner. The algorithm can be applied also to produce
splines which stay below upper or stay above lower constant bounds. It is also very
useful as a starting procedure for finding the globally best spline. © 1991 Academic

Press, Inc.

1. INTRODUCTION

Shape-preserving approximation is nowadays understood as an
approximation which preserves relevant properties of the underlying func­
tion. These properties may be non-negativity (positivity), monotonicity
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(strict monotonicity), boundedness of the first derivative, etc.; in certain
cases the goal is simply to produce "visually pleasing" approximations
(cf. Carlson [6]).

Not so long ago several of these types of approximations were broadly
referred to as monotone approximations (cf. Lorentz and Zeller [21]). The
concept and subject of monotone approximation, a major trend in
approximation theory, were introduced by Shisha [29] (see also [20J in
this connection). In particular preservation of (ordinary) convexity has
attracted several authors. One of the early papers is by Hornung [19].
More recent results are by Burmeister, Hess, and J. W. Schmidt in
several papers [5, 16, 25, 26]. Convergence rates for monotone spline
interpolation were given by Utreras [31].

We are concerned here with the preservation of non-negativity by using
interpolating cubic splines. One immediate application is a class of
problems arising in non-parametric statistics. Let Xu X2 , ••• , Xn be the
order statistics from a random sample of independent and identically
distributed random variables arising from a population with unknown
continuous density function f Consider' the problem of obtaining an
estimate J of f, based on the sample and on some simple assumptions
regarding the degree of smoothness of f The first attempt at a solution of
this problem was made by Boneva, Kendall, and Stefanov [3]. Using an
area-matching condition on the histogram, they constructed a quadratic
spline approximation to f This work was extended by Schoenberg [27],
who used the area-matching condition to construct cubic and quintic spline
approximations to the cumulative distribution function F. In all of these
applications, the constraint f~ 0 was ignored.

More recently de Montricher, Tapia, and Thompson [14] developed the
theory of a maximum penalized likelihood estimator of f in which the
constraint f~ 0 was incorporated in the analysis. However, there was no
numerical implementation.

Another important statistical application, where the non-negativity
constraint has been ignored, is the construction of smoothing spline
approximations to the spectral density of a second order stationary
random process. Cogburn and Davis [7] developed the theory of periodic
smoothing L-splines, which in a particular case yielded a polynomial spline
approximation to the spectral density . Wahba [32] developed a
smoothing periodic polynomial spline approximation to the logarithm of
the spectral density, and she has also done considerable research on the
practical problem of estimating the optimal value of the Lagrange
multiplier. De Figueiredo and Thompson [11] constructed smoothing
cubic spline approximations to the spectral density. All of the above
authors started with the periodogram of the random process which was
then smoothed in some manner.
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Another area in which non-negative polynomial splines are applicable is
in the construction of quadrature rules with non-negative weights.
Although no use of splines was made, Davis [8J gave a constructive proof
of a result by Tchakaloff [30J on the existence of non-negative quadrature
formulas. Applications of shape-preserving interpolation were made by Hill
and Passow [17].

The rapid development of digital microprocessors has increased the area
of feasibility for digital signal processing. Communications engineers are
becoming aware of the potentialities of the use of splines, as evidenced, for
example, in the work of Polge and Bhagavan [23 J, in which polynomial
spline approximations to various signal waveforms were constructed. Many
functions considered in this subject, such as the signal envelope and the
ambiguity function, are non-negative functions [24].

There have been two main attempts on this problem in the literature.
One concept was followed by de Boor and Daniel [lOJ. It consisted oj

representing a spline by non-negative linear combinations of B-splines.
Naturally such a spline is non-negative.

The other concept was to use quadratic Bernstein-polynomials. In this
area there have been many investigations, both theoretical and numerical,
including those of Akima [2J, Briggs and Rubel [4J, Deimel, Doss,
Fornuaro, McAllister, and Roulier [12J, Deimel, McAllister, and Roulier
[13J and Schumaker [28].

The latter concept has been also applied in CAD (see [15]).
The present authors use an entirely different approach to the construc­

tion of non-negative interpolating cubic splines. They consider first the
natural spline which satisfies only the obvious constraint of passing
through the data points.

In the second step in each subinterval between two successive knots in
which this spline assumes negative values, the relevant portion of the spline
is replaced by a non-negative cubic spline. This is carried out by the addi­
tion of extra knots, the location of which is variable and depends only on
the values of the original spline and onts derivatives at the end points of
the relevant subintervals. Hence, the fixing up procedure is entirely local in
nature. In a first step one can determine a best non-negative spline, in the
sense that the strain energy integral in each such sub-interval is minimized
under the assumption that the extra knots are fixed.

In the last step the knots are also varied, again with the goal of minimizing
the strain energy integral which require to solve a nonlinear (but not too
difficult) equation. Here we make use of a characterization of such splines
as given in Opfer and Oberle [22].

As a by-product we obtain an algorithm which can be used to produce
splines which stay locally (i.e., between two consecutive knots) below or
above a given constant.
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The results can be extended to splines of arbitrary degree without
difficulties.

2. PRELIMINARIES

We present here a few well known results on cubic splines that we shall
require. This material is treated well in [1].

We consider an interval [a, b], a < b, and subdivide it by a mesh of
points ,1, where

,1 : a = Xl < X2 < ... < Xn = b.

An associated set of ordinates Y = {y; Ii = 1, 2, ..., n} is prescribed. A
cubic spline is a function SJ(Y; . ) which is continuous together with its first
and second derivatives on [a, b], and which coincides with a cubic polyno­
mial in each subinterval [xj _ b xj ],j=2, 3, ..., n, and satisfies the interpola­
tion conditions SAy; Xj) = Yj, j = 1, 2, ..., n. The points {xj Ij = 1, 2, ..., n}
are termed the knots of the spline. Moreover, a natural cubic spline is one
satisfying the boundary conditions S~(y; xd = S~(y; x n ) = O. The existence
and uniqueness of an interpolating natural cubic spline is well established.
Moreover, we denote by W~2) the Sobolev space of real valued functions on
[a, b] with absolutely continuous first derivative and square integrable
second derivative. The first result that we require is a theorem due to
Holladay [18].

THEOREM 2.1. LetL1: a=x I =X2 < ... < Xn =b and y= {Yil i= 1,2, ..., n}
be given. Then ofall functions f in W~2) such that f(x;) = Yi, the natural cubic
spline SJ(Y; . ) minimizes

uniquely.

The second result that we shall require is termed the first integral
relation or simply Theorem of Pythagoras (cf. de Boor [9, p.66]):

rf"2(x)dx-rS~2(y;x)dx=r 1f"(x)-S~(y;x)12dx (2.1)
a a a

for all f E W~2) which passes through the data points. And clearly (2.1) is
valid if in addition f?: O.
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In this paper we consider the obvious constraint that the prescribed vec­
tor Y is positive; i.e., Yi> 0, i = 1, 2, ..., n. In view of Holladay's theorem,
the minimizer of (2.1) is the natural cubic spline S,Ay; .), but this does not
in general satisfy the non-negativity constraint. In the sequel, for brevity,
we abbreviate by SL/(Y; .) the unconstrained interpolating spline, since all
splines under consideration pass necessarily through the data points.

To search for a non-negative function f in the subset of W~2) consisting
of all non-negative cubic splines (passing through the data points) that
minimizes the semi-norm f~f"2(X) dx would require the repeated computa­
tion of natural splines on finer grids than the given A.

If SL/(Y; . ) ~ 0,/= SL/(Y; . ) minimizes f~f"2(X) dx and then our problem
is solved.

Therefore we consider the case in which S L/ (y; .) has two distinct zero
crossings in just one interval, say [x), x i + 1]. Also we set R) = [a, xJ u
[x) + 1, b]. In view of the first integral relation, we have

rf"2(X) dx-rS~2(y; x) dx
a a

=f .1f"(x)-S~(y;xWdx+ f+l 1f"(x)-S~(y;xWdx. (3.1)
R; Xj

A consequence of the first integral relation is that the mInImUm of
J~ If"(x) - S~(y; xW dx can be computed by minimizing J~f"2(X) dx
alone.

In order to obtain a local minimizing procedure which depends only on
the interval [X),X)~lJ we set f(x) = SAy; x) for all xER). Since in this
case SRj If"(x) - S~(y; xW dx = 0, it remains to minimize

(3.2)

We have put f(x) = SL/(Y; x) for all x E R). In order that the resulting
spline is still in C 2

, the minimizer of (3.2) has to be restricted to the
conditions

f(x)~O forall XE[X),X)+lJ,

f(k)(X/) = S~)(y; Xl); k = 0, 1,2; 1=j, j + 1.
(3.3 )

Moreover, we see that, regardless of the number of intervals in [a, bJ
in which SA(Y; . ) possesses negative values, the above considerations may
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be applied separately to each such interval and result in each case in
minimizing (3.2) subject to (3.3). We emphasize also that we have not
established as yet the existence of such an non-negative spline. We have,
however, shown that if such a cubic spline exists, then it is determined in
each interval solely by the boundary conditions on SL/(Y; .) in that interval.

Thus we seek a non-negative cubic spline fin [xj ' Xj+ 1] which matches
SL/(Y;'), S~(y;·), and S~(y;·) at the endpoints and minimizes (3.2). It is
plausible that such an J, if it exists at all, should have the x-axis as a
tangent at some interior x E ]xj ' xj + 1 [ and f" (x) ): O.

It should be emphasized that our local algorithm suggested will not solve
the global problem of minimizing J~f"(X)2 dx subject to f): O. However, it
will produce-as we will see from the examples-a visually pleasing non­
negative spline with little expense.

4. CONSTRUCTION OF FEASIBLE AND BEST CUBIC SPLINES

Let j be an index such that the natural cubic spline SL/(Y; . ) has negative
values in Ij=[xj,xj + i ]. Since the second derivatives S~(Y;Xj) and
S~(y;xj+d are already uniquely determined by the four values SAy;xj ),
S~(y; xj ), SAy; Xj + d, S~(y; Xj + d we cannot expect to find a non-negative
spline in I j which matches all six boundary conditions mentioned in (3.3)
and minimizes (3.2) as well.

Let us simplify our notation by calling the above interval only 1= [u, v].
The spline SL/(Y; . ) restricted to I is a cubic polynomial and will be called
p in the sequel of this section.

Two typical polynomials which are positive at the endpoints of I and
negative somewhere in the interior are

Pi = 1- 7x + 4x 2 + 4x3
,

P2 = 2 -24x -75x2 + 50x 3
,

XE [0,1],

XE [0,1].

(4.1a)

(4.1b)

(4.2)

These polynomials will serve as test cases later on. The graphs are shown
in Fig. 1. The relevant zeros of Pi are Xl = 0.15977540, Xr = 0.79886759, and
those of P2 are Xl = 0.61705073, Xr = 0.95110062.

The problem of the preceding section can now be reformulated as finding
a functionfE W~[u, v] with

rf"2(X) dx = min
u

subject to

f(x)~O forall xEI=[u,v], (4.3)

f(u)=(Jo, f'(u)=(J~, f(V)=(Jh f'(v)=(J~, (4.4)
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FIG. 1. Two test polynomials with positive endpoints and negative interior points.

where the four numbers (J are given by

(J 0 = p(u) > 0, (J~ = p'(u), 0" 1 = p(v) > 0, 0"; =p'(v), (4.5)

for a cubic polynomial p for which p(x) < 0 for some x EO I. Thus p has
precisely two zeros x I < X r in I. A necessary condition which is crucial in
the construction of non-negative cubic spline which solves the above
problem can be derived by variational techniques or by methods used
optimal control theory. The main information is contained in the following

THEOREM 4.1. Letf solve the problem (4.2) to (4.5). Thenfis a cubic C2
_

spline with precisely one or two additional (simple) knots in the interior of I
at which f vanishes. If there are two interior knots then f vanishes identically
between these knots. Furthermore there are no zeros of f apart from or
between the knots.

Proof Compare Opfer and Oberle [22]. •

A cubic spline with precisely one or two knots in the interior of I is
called feasible if it matches the constraints (4.3) to (4.5). It is optimal it if
solves the problem (4.2) to (4.5).

THEOREM 4.2. The set offeasible splines is not empty.
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Proof Let B be a cubic B-spline with vanishing values and vanishing
first derivatives at the endpoints of I and with exactly one additional knot
in the interior of I. For all IX E IR, the spline

s=p+IXB (4.6)

matches the boundary conditions (4.4) and (4.5). If IX is sufficiently large it
follows that s(x);?; 0 for all x E I. A similar construction is possible if we do
have precisely two interior knots. I

COROLLARY 4.1. There is a feasible spline s for which there exists a point
(called a contact point) XE ]u, v[ such that s(x)=s'(x)=O, s"(x);?;O.

Proof If s is a feasible spline such that s(x) = 0 for some interior point
X, then necessarily s'(x) = 0 and s"(x);?; 0 since x is a local minimum of s.
By varying rt. in (4.6) we can produce splines s with positive and with
negative minima. Therefore there must be an rt. such that the corresponding
s has minimum value zero. Since s(u) = (J0> 0, s(v) = (J I> 0 this minimum
must be attained at an interior point X. I

A feasible spline with a contact point x as described in Corollary 4.1 can
be constructed easily. The non-negativity condition of s reads

s(x) = p(x) + IXB(x);?; 0 for all x E I.

Since B(x»O for all XE ]u, v[ we must require that

rt.;?;-p(x)jB(x) forall XE]U,V[.

Therefore the smallest rt. which defines a feasible spline is

&= max {-p(x)jB(x)},
XE [X/,X,]

where

(4.7)

and U<x/<xr<V. (4.8)

Let &= -p(x)jB(x); then clearly s(x)=p(x)+&B(x)=O and s(x)~O for
all xEI.

For the two polynomials Pi> P2 of (4.1) the corresponding curves -pjB
are sketched in Fig. 2.

For PI we obtain &= 2.42814970 and for P2 we obtain &= 18.9384921
where the additional knot is taken at 0.3.

A feasible spline 8 is called a best spline if for fixed interior knot(s) it
approximates the given polynomial best, i.e.,

II p" - 8"112 < lip" - s"112 for all feasible s, (4.9)
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FIG. 2. Quotients -piB for the two test polynomials p =Pl and P =P2'

where II 112 is the usual 2-norm. If we use s = p + (l.B from (4.6) then (4.9)
reads aIIB"112 ~ a IIB"112 for all a which define feasible splines. Since we have
already computed the smallest a which defines a feasible spline, namely &
of (4.7), this a also defines a best spline in the sense of (4.9).

In view of Theorem 4.1, splines with precisely two interior knots also
must be taken into account. If we choose two interior knots, say
u < ~ I < ~r < v arbitrarily, then we cannot expect to find a feasible C2-spline
which vanishes between the two given knots, since this would require
finding two cubic polynomials each defined by five conditions. We will call
a feasible C2-spline with two interior knots which vanishes between these
two· knots a spline with a contact line (sometimes also called spline with
boundary arc). It should be remarked here that by using a representation
of the form s=p+ajB j +a2B2 it is not so easy to construct a feasible
spline with two interior knots.

It should be observed that the evaluation of IIB"112' if at all necessary,
can be carried out exactly by applying Simpson's rule in the subintervals
defined by the knots.

5. OPTIMAL KNOTS SELECTION

Let us consider the same setting as before. The only difference now is
that the interior knots are regarded as free. As measure of approximation
we still use the semi-norm lip" -s"112' We have to distinguish between two
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FIG. 3. Best splines for test polynomial Pl'

cases according to the number of interior knots. In Figs. 3 and 4 we present
best splines for different placements of one additional knot which
demonstrate that it is worthwhile to think about the placement of the
interior knot(s).

A. Case of Two Interior Knots

The case of two interior knots u < ~ I < ~ r < v turns out to be simpler.
Therefore we treat this case first. For this case we apply Theorem 4.1 and

.2 .4

FIG. 4. Best splines for test polynomial P2'
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take the spline s in a form which is more convenient for our purpose,
namely

for x E [u, ~IJ,

for x E J(I, ~r[,

for x E [(n v].

(5.1 )

This representation makes s automatically a C2-spline. We have to satisfy
the conditions (4.4), (4.5) which read explicitly

S(u) = 0"0 = al((I- U)3,

s(v)=O"j =ar(v-(r)3,

s'(u)=O"~= -3a l ((I-u)2,

s'(v) = 0"1 = 3arev - (rf

(5.2a)

(5.2b)

The first two equations are equations for the unknowns ai' (r. The last two
equations are equations for the unknowns an (r' These equations can be
easily solved. And the solution is

(5.3 )

Since we must have u < ~r < ~r < v, we obtain the requirements

O"~ < 0, 0"1> 0, (5.4 )

The first two conditions imply that the coefficients af, a r > 0 with the conse­
quence that s(x)?:O for all XE [u, vl They also say that p is convex on
[u, vl However, convexity alone does not imply the existence of a contact
line. For, replacing p by p + const does not change the convexity. But the
last condition of (5.4) wiH not hold if the constant is only large enough. We
turn now to the case of one interior knot.

B. Case of One Interior Knot

We use a similar representation as in the previous case, namely

for x E [u, ~[,

for XE[(,V],
(5.5)

where ~ is the unknown knot. The representation (5.5) again makes s a
C2-spline. Since ( is a contact point we must have sf!(0/2 = bI?: O.
The spline must meet the four conditions (4.4). Therefore we have four
equations for the unknowns ai, an hi, (. From these four equations one
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can easily eliminate the quantities ai' ar and one is left with two equations
for b

"
~ which can be put into the form

b,(~ - uf (v - ~f = (v - ~)2 (30"0 + O"~(~ - u)),

b,(~ - U)2 (v - ~)2 = (~- U)2 (30"1 - O"~(v - 0).

Since b I:;:::: 0 we must have

(5.6a)

(5.6b)

(5.7)

in order that the above equations have a solution. Every solution is then
a zero of the cubic polynomial

g(~) = (v - ~)2 (30"0 + O"~(~ - u)) - (~- U)2 (30" 1- O"~(v - ~)).

(5.8)

This polynomial always has at least one zero in ] u, v[ since g(u) > 0 and
g(v) <0.

In dependence on the signs of O"~ and O"~ the conditions (5.7) are given
in Table I.

From Table I we see that conditions (5.7) are valid exactly if conditions
(5.4) are not valid.

If the given problem (4.2) to (4.5) would have two different solutions,
any convex combination of these solutions would also be a solution. Thus
we would have an infinite number of solutions. Our conditions, however,
allow only finitely many solutions (namely at most three, corresponding to
the zeros of g defined in (5.8)). Therefore only one solution is possible.

We summarize.

THEOREM 5.1. Let p be a polynomial on [u, v] with properties mentioned
in (4.5). If p satisfies conditions (5.4) the optimal spline s is defined by two
interior knots u < ~ I < ~ r < v and it is given by (5.1) and (5.3). If the conditions

TABLE I

Conditions (5.7) in Dependence on the Signs of the O'''S

Sign 0'0 Sign O'~

+ +
+

+

Conditions (5.7)

u ~ v - 30'dO'; ~ ~ ~ v
Cannot occur

v -30'dO'~ ~ ~ ~ u - 30'0/0'0
~~u-30'0/0'0~v
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(5.4) are not satisfied, then the optimal spline s is defined by precisely one
interior knot u < ~ < v, and s is defined by (5.5), (5.6), (5.8).

Proof By the above considerations. I
We apply the above theorem to the two test polynomials Pl' P2 defined

in (4.1a), (4.1b), respectively. For Pl we obtain

(To = 1, (T~ = -7, (Tl = 2, (T; = 13

and condition (5.4) is valid. Thus the resulting spline s has a contact line
and is defined in (5.1), (5.3) with

~/=3/7=0.4286, a/= 73/27 = 12.7037, (5.9a)

~r = 7/13 = 0.5385, a r = 13 3/108 = 20.3426, (5.9b)

lip" -s"112 = 13.88044188. (5.9c)

From the last condition in (5.4) we deduce that we could replace p 1 with
PI + const without violating this condition as long as const < 1/6. For P2
we have

(To = 2, (T~ = 24,

and condition (5.4) is not valid. Thus the solution has only a contact point
and is obtained from (5.8), (5.6), (5.5):

~=(2+3J2)/7=0.89180581, (5.l0u)

b/=2340.968830, a[= -2622.156167, G r = -20,847.16817,
(5.10b)

eX = 4.05250462, lip" - s"I12 = 45.1936094,

. 4 . 5

FIG. 5. Optimal spline for test polynomial P"
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,,,,,
,

.2 .4

FIG. 6. Optimal spline for test polynomial P2.

where eX refers to the former representation (4.6). The optimal splines are
presented in Figs. 5 and 6.

C. General Remarks

The procedure described is very simple and the results are very satisfac­
tory in many cases. The procedure may serve also another purpose. When
computing non-negative splines according to a global strategy (cf. [22])
the start selection of knots turns out to be crucial, since these knots serve
as initial values for a Newton-iteration. From our own numerical
experience it is apparent that the optimal knots as described in this section
are in general very useful as starting values for the above mentioned
Newton-iteration, cf. Dauner and Reinsch.
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